
Recomputing normals for displacement

and bump mapping, procedural style

Stefan Gustavson

November 26, 2021

Old style (hairy)

Bump mapping as originally proposed by Jim Blinn [1] was defined in 2-D
parameter space (u, v) for parametric surfaces P(u, v) and a virtual displace-
ment function h(u, v). In order to use it with non-parametric surfaces, such
as the polygon mesh models that are ubiquitous in modern computer graph-
ics, some extrinsic parametrization is required. Fortunately, most modern
applications of computer graphics use texture mapping, and the 2-D texture
space (s, t) is such an extrinsic parametrization. The displacement can be
specified as a single channel (gray scale) 2-D texture image h(s, t), and the
virtual displaced position P of the surface is a distance of h(s, t) from the
original position P0 along the normal direction N̂0:

P = P0 + h(s, t)N̂0 (1)

Recomputing the direction of the normal for the bumped surface requires
computing of partial derivatives of h(s, t) with respect to s and t: ∂h

∂s and
∂h
∂t . For performance reasons, these derivatives may be precomputed and
stored as a texture.

Normal mapping, a modern sibling to bump mapping, is performed sim-
ilarly, only with the normal specified explicitly as a 3-component texture
N̂(s, t) which completely replaces the interpolated mesh normal. This is
somewhat less flexible than bump mapping, but it requires less computa-
tions.

Displacement mapping, which involves actually changing the position of
the surface, is closely related to bump mapping, because the displacement
is mostly specified as taking place along the normal direction, as in Equa-
tion 1. Recomputing the normal after displacement mapping involves the
same computations as bump mapping, requiring in-plane partial derivatives
of the displacement function.

When applied to a plane, the corresponding remapping of the normal is
quite straightforward for both bump mapping and normal mapping. How-
ever, when bump mapping is applied to a general surface with a locally

1

varying normal direction, recomputing the normal requires full knowledge
of the orientation of the surface in 3-D space. In addition to the ubiquitous
normal direction, one or two additional vectors are specified to relate the
2-D texture coordinates (s, t) to 3-D space (x, y, z). The basis vectors ŝ and
t̂ that define the tangent plane are orthogonal to the surface normal N̂ and
parallel to the local gradient of each of the texture coordinates, ∇s and ∇t:

s = ∇s = (
∂s

∂x
,
∂s

∂y
,
∂s

∂z
)

t = ∇t = (
∂t

∂x
,
∂t

∂y
,
∂t

∂z
)

Unit vectors ŝ and t̂ are then computed by normalization of s and t.
It should be noted that the computation of these vectors is usually not

performed in this manner (using partial derivatives). Instead, the tangent
plane vectors are specified explicitly in the form of additional vertex at-
tributes for the mesh model. If the 2-D texture mapping has reasonably
orthogonal coordinate directions, it may be enough to specify one of the
vectors and compute the other by a cross product with the normal. The two
additional vectors are often referred to as tangent and binormal, although
both are actually tangents to the surface.

Once we have the unit vectors ŝ and t̂, the new, bumped surface normal
can be computed by modifying the original surface normal N̂0 according to:

N = N̂0 −
∂h

∂s
ŝ− ∂h

∂t
t̂ (2)

and renormalizing N to unit length.
As noted already by Blinn, this is an approximation which is valid only if

the local curvature of the surface is small in comparison to the local curvature
of the bump function. However, even in situations when the approximation
is bad, the visual result remains compelling.

The rather intricate business of fiddling with a 2-D tangent space and its
mapping to 3-D space has been the source of much confusion and frustra-
tion in the computer graphics industry. Tutorials and examples have been
unclear, sometimes even wrong, and even many commercial tools have failed
to perform the corresponding transformations and interpolations correctly.
For a surprisingly recent and long needed treatise on this, please refer to [2].
The same author later published an article [3] which is essentially a longer
and much better motivated version of the presentation that follows.

In short, a procedural bump mapping function defined in 3-D space re-
moves the requirement for an explicit 2-D tangent space, and things become
a whole lot simpler.

2

New style (easy)

Displacement mapping and bump mapping both work the same, except that
for bump mapping you only recompute the normals as if you displaced the
surface. Assume that we use a 3-D function h(x, y, z) for the displacement:

P = P0 + h(x, y, z)N̂0 (3)

The difference from Equation 1 is that there is no longer an explicit 2-D
tangent space, just a 3-D object space, and no surface parametrization is
implied. To compute the normal of the displaced surface P, we still need to
project the gradient of the displacement function to the tangent plane, but
this is easily done by basic linear algebra: project the gradient to the nor-
mal by a scalar product, and then subtract the part of the gradient which is
parallel to the normal. (This is a central part of the Gram-Schmidt orthogo-
nalization process, where you construct an orthogonal coordinate basis from
an arbitrary set of linearly independent vectors.) What remains after the
subtraction is the part of the gradient which is orthogonal to the normal,
or precisely the gradient projected to the local tangent plane of the surface.
However, that vector is now conveniently expressed in 3-D object space. It
can be added directly to the normal, which is also defined in object space:

g = ∇h = (
∂h

∂x
,
∂h

∂y
,
∂h

∂z
) (4)

g∥ = (g · N̂0)N̂0 (5)

g⊥ = g− g∥ (6)

N = N̂0 − g⊥ (7)

N̂ =
N

|N|
(8)

Note how this only requires vector computations in object space (x, y, z).
For procedural displacement functions, the gradient g can often be com-

puted analytically and evaluated exactly with relative ease. If that is not
an option, finite differences can always do the trick with sufficient accuracy,
albeit mostly at a higher computational cost. Computing g by finite dif-
ferences requires at least three extra evaluations of h(x, y, z), whereas the
exact analytic gradient of, say, a noise function, often turns out to be con-
siderably less expensive to compute. Simplex noise and Worley noise both
clearly fall into this category. Classic Perlin noise is slightly more cumber-
some to differentiate analytically, but it’s still easier than computing finite
differences.

3

GLSL implementation

In a pair of vertex and fragment shaders in GLSL, assuming that you have
a noise function float noise(vec3 p, out vec3 g) that returns its gradient in the
argument g, displacement and bump mapping could be handled like shown
below. Note that the transformation of normals is done by the fragment
shader, to make it as straightforward as possible to perform both the dis-
placement and bump computations in object space.

Vertex shader

in vec3 position; // Syntax for attributes differs between versions

in vec3 normal;

uniform mat4 modelViewMatrix;

uniform mat4 projectionMatrix;

out vec3 N; // (For GLSL 1.20, 'out ' is 'varying ')

out vec3 texcoord; // Object coordinates before displacement

void main()

{

const float displaceamount = 0.1; // Move max 0.1 up or down

texcoord = position; // Undisplaced , untransformed position

// Displace surface

vec3 p; // Displaced surface point

vec3 g; // To store gradient of noise

float d = noise(texcoord *2.0, g);

g *= 2.0; // Scale gradient with inner derivative

p = position + displaceamount * d * normal; // Move vertex

vec3 N_ = g - dot(g, normal) * normal; // Project to tangent plane

N = normalize(normal - displaceamount * N_); // Perturb normal

gl_Position = projectionMatrix*modelViewMatrix*vec4(p, 1.0);

}

Fragment shader

uniform mat3 normalMatrix; // Or fake and use mat3(modelViewMatrix)

in vec3 texcoord; // (For GLSL 1.20, 'in ' is 'varying ')

in vec3 N;

void main()

{

const float bumpamount = 0.05; // Bump 1/2 of disp at scale

vec3 g; // To store gradient of noise

float b = noise(texcoord *10.0, g); // Object coordinates

g *= 10.0; // Scale gradient with inner derivative

b *= 0.2; g *= 0.2; // Bump noise is 1/5 size of disp noise

N = normalize(N); // Optional: renormalize after interpolation

vec3 N_ = g - dot(g, N) * N; // Project to tangent plane

vec3 bN = N - bumpamount * N_; // Perturb normal

bN = normalize(normalMatrix * bN); // Transform to view space

// Perform lighting computations with bN instead of N

// (not shown here) to generate the fragment shader output

}

4

References

[1] Jim Blinn: Simulation of wrinkled surfaces, In ACM Computer Graphics
(SIGGRAPH ’78), pages 286-292, 1978.

[2] Morten S. Mikkelsen: Simulation of Wrinkled Surfaces Revisited, Thesis,
2008.

[3] Morten S. Mikkelsen: Bump Mapping Unparameterized Surfaces on the
GPU, Journal of Graphics, GPU, and Game Tools, Volume 15, Number
1, pp 49-61, 2010.

5

